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1 See generally U.S. PATENT & TRADEMARK OFFICE, PATENT CLASSIFICATION
WEB SITE, available at http://www.uspto.gov/web/patents/classification/
(last visited June 22, 2003).

2 See generally RANDALL C. O’REILLY & YUKO MUNAKATA,
COMPUTATIONAL EXPLORATIONS IN COGNITIVE NEUROSCIENCE:
UNDERSTANDING THE MIND BY SIMULATING THE BRAIN (MIT Press 2000).

3 See, e.g., Shatterproof Glass Corp. v. Libbey-Owens Ford Co., 758 F.2d
613, 620, 225 U.S.P.Q. (BNA) 634, 638 (Fed. Cir. 1985).

I. INTRODUCTION

The Patent Office’s (“PTO”) internal classification system categorizes
inventions mostly by structure, in the form of articles or products.1  This
system is sufficient for many inventions but not for software performing
functions analogous to the central nervous system (“CNS”).  Neural
software, also called neural computation or artificial intelligence (“AI”), is
written to perform CNS functions and should be categorized using patent
classifications to be developed based upon CNS functions which are
observed in cognitive neuroscience research.  These functions solve problems
and thus enable survival of the animal in its environment.

Conventional software performs functions analogous to those of
machines or real world objects.  Neural software performs steps based upon
analogies to mental steps.2  Conventional software patents already suffer
from a high level of abstraction. Neural software patents inherit all the
existing difficulties of other software patents and, in addition, suffer effects
from an even higher level of abstraction.

Problem-solving categories would focus on the underlying functions
involved rather than on the specific invention’s application.  The
problem-solving approach is already found in applicable case law governing
patent validity.3  The first step in using new classifications would be to
resolve whether a software invention is analogous either to a physical
machine, implementing steps from rules, or to a process, like CNS functions.
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4 Allen Newell, Response: The Models are Broken, the Models are Broken, 47
U. PITT. L. REV. 1023 (1986).

5 Id. (citing Gottschalk v. Benson, 409 U.S. 63, 175 U.S.P.Q. (BNA) 673
(1972)).

6 Id. at 1024.

7 Id. at 1023.

Next, the examiner would identify CNS functions in the claims and then
assess novelty, obviousness, written description, enablement, and best mode
in light of those functions.  CNS analogs, used alongside existing
classifications, would improve examination and provide better disclosure
of the contents of neural software patents.

II. THE FUNCTION OF A MODEL

Although he was not a lawyer—rather, perhaps, because he was not
a lawyer—Allen Newell, a computer scientist, put his finger on the
inadequacy of the models for patenting software.4  According to Newell,
case law holding that an algorithm was unpatentable per se5 reflected a
misconception that algorithms are solely mathematical equations: in truth,
an “algorithm is an unambiguous specification of a conditional sequence of
steps or operations for solving a class of problems.”6  More than fifteen years
ago Newell identified the confusion at the core of the issue of software
patentability: “The confusions that bedevil algorithms and patentability
arise from the basic conceptual models that we use to think about algorithms
and their use.  That is why I have entitled my remarks, ‘The Models are
Broken, the Models are Broken.’”7  Implicit in Newell’s remarks was that
patent law’s problem with software stems from the intangibility of the
subject matter.  As a result of the intangible nature of software, more
tangible models to classify it would be helpful.
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8 WEBSTER’S NINTH NEW COLLEGIATE DICTIONARY 762 (1987).

9 ROBERT A. NISBET, SOCIAL CHANGE AND HISTORY; ASPECTS OF THE
WESTERN THEORY OF DEVELOPMENT 5 (Oxford University Press 1969).

10 GREGORY A. STOBBS, SOFTWARE PATENTS § 1.03 (Aspen Law & Business
2000) (citing CHARLES J. BASHE, ET AL., IBM’S EARLY COMPUTERS (MIT
Press 1986)).

11 Id.

Humans appear to have used models and analogies throughout
history as means for explaining the existence and function of the world.  A
model may also be described as a metaphor, in the sense that it can be
considered a pattern or exemplar.8  As one scholar stated, “it is clear from
many studies of the cognitive process generally, and particularly of creative
thought, that the act of thought in its more intense phases is often
inseparable from metaphor.”9  Legal theory, as one of the most abstract of
human endeavors, needs the most appropriate models in order to be of the
most use to society.  Patent law especially, as one of the more abstract areas
of law covering intangible rights, needs appropriate models when grappling
with intangible neural software.

Understanding the problems presented by neural software patents,
though, requires looking to the origins of software.  The first computers
were mechanical devices which tabulated information embedded in physical
media such as punch cards.   Software was a new, intangible means for
calculating information which had been tabulated previously by mechanical
means.10  The computer acquired through software the ability to run its
operations in lieu of physical assistance formerly supplied by external
agency.  Software originated as intangible instructions supplanting external,
physical control of mechanical computers.11

From software’s origins as a substitute for physical agency in
running computer machinery, a very machine-like thing occurred.  The
content of such conventional software became a series of pre-programmed
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12 John McCarthy & Patrick Hayes, Some Philosophical Problems from the
Standpoint of Artificial Intelligence, in 4 MACHINE INTELLIGENCE 463
(Bernard Meltzer & Donald Michie eds., 1969); see also John Searle,
Minds, Brains and Programs, in PHILOSOPHY OF ARTIFICIAL INTELLIGENCE
(Margaret A. Boden ed., 1990).

13 McCarthy & Hayes, supra note 12.

“if-then” steps or rules which cannot perform differently than the
pre-determined rules.12  Most software currently created is “conventional”
in this sense.13  Conventional software does not adapt to situations not
provided for by the designer, nor can it recognize patterns with partially
degraded features.  Conventional software is an intangible machine which
operates within a tangible computer.  Machines are objects constructed by
humans as tools, and conventional software meets that definition in a new
way by automating functions which previously required physical action.
Software originated when little was known about cognitive neuroscience
and, until the last twenty to twenty-five years, computer scientists made no
effort to design software based upon principles obtained through cognitive
neuroscience research.  Recent advances in cognitive neuroscience, however,
have spawned numerous efforts to design neural software which mimics the
mental operations of the CNS.  The intangibility of neural software makes
it especially difficult to classify.  A new set of categories would help the PTO
and practitioners keep track of important similarities and distinctions among
such inventions.

III. THE IMPORTANCE OF COGNITIVE NEUROSCIENCE

As the many CNS functions are gradually being deciphered,
advances in software attempt to mimic these individual functions.
Neuro-mimetic software is proliferating and is an area of huge potential
growth of inventive activity.  Applying traditional patent law elements to
neural software presents challenges, but also new opportunities to cope with
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14 See generally CHRISTOF KOCH, BIOPHYSICS OF COMPUTATION:
INFORMATION PROCESSING IN SINGLE NEURONS (Oxford University Press
1999).

the onslaught of such inventions.  And where would one look for better
ways to assess such new neuro-mimetic inventions?  The CNS itself
provides guidance for software inspired by the CNS.  Parts III.A to III.C
introduce cognitive neuroscience which supports the proposal in part IV
that neural software should be classified according to the CNS functions
which inspire the software.14

A. Synapses and Spikes

The most basic function of the CNS is to receive stimuli from inside
and outside the body.  The CNS includes the processing centers of the
familiar sensory systems of vision, hearing, touch, smell, and taste.  Much
of the brain is devoted to finding the most useful bits in the avalanche of
sensory information.

Neurons are CNS cells.  They communicate information to one
another at connections known as synapses.  Synapses can be electrical or
chemical.

At a chemical synapse, a neuron sends a message to another neuron.
In the first, or “presynaptic” neuron, a vesicle containing a chemical
neurotransmitter fuses with the cell membrane and the neurotransmitter is
released into the tiny space between neurons, known as the “interstitial
space.”  These neurotransmitters attach to receptors on the second, or
“post-synaptic” neuron, which causes a change in the cell membrane and
allows ions to flow from the interstitial space into the post-synaptic cell.

The rapid movement of ions changes the electrical potential inside
the post-synaptic neuron.  Neurons can depolarize from their normal,
slightly negative, voltage of approximately 70 millivolts to a slightly positive
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15 DAVID WHIKEHART, BIOCHEMISTRY OF THE EYE 152 fig.7-1 (Butterworth-
Heinemann 1994).

value.  When enough positively charged ions flow into a neuron to raise the
electrical potential to its “threshold,” there is another sudden influx of ions.

An influx of positively charged sodium (Na+), potassium (K+), or
calcium (Ca2+) ions produces an excitatory post-synaptic potential (“EPSP”).
Alternatively, an influx of negatively charged chloride (Cl - ) ions produces
an inhibitory post-synaptic potential (“IPSP”), hyperpolarizing the neuron
and making it more resistant to depolarization.

This polarization is rapidly transmitted from the neuron’s “soma,”
or body, which contains the cell’s nucleus, down the axon.  This process,
shown in the graph below,15 is called an action potential, or “spike,” and is
a unit in the language by which neurons communicate:
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16 DONALD OLDING HEBB, ORGANIZATION OF BEHAVIOR: A
NEUROPSYCHOLOGICAL THEORY (Wiley 1949).

In an axonal spike, the rapid wave of depolarizing current travels down the
axon membrane and causes neurotransmitters to be released into the next
post-synaptic space.

The spike is an all-or-nothing event; chemical neurotransmitters are
typically only released if there’s a spike in the pre-synaptic neuronal axon.
Thus, the spike creates a sort of binary code of “off” (not depolarized) or
“on” (depolarized).

The other form of connectivity between neurons is an electrical
synapse.  A direct opening between two neurons, known as a gap junction,
allows for the actual transfer of ions from one cell to another.  The amount
of ion flow through an electrical synapse depends on the concentration of
ions near the pre-synaptic cell.  Electrical synapses are not binary but, rather,
graded like analog circuits and thus have properties different from chemical
synapses.  The interrelationship between chemical and electrical synapses
is important to the dynamics of a system.

As a result of its architecture, an emergent property of the CNS is its
plasticity, the ability to adapt to changing stimuli and environments.  One
of the seminal insights into plasticity was Donald Hebb’s postulation, more
than fifty years ago, that “[w]hen an axon of cell A is near enough to excite
cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.”16  Increased connectivity
between synapses is believed to be synonymous with learning and is often
called long-term potentiation (“LTP”); a decrease in connectivity is called
long-term depression (“LTD”).  How plasticity, LTP and LTD, is
implemented synaptically is a major question.  Is it accomplished by a
change in the number and distribution of neurotransmitter vesicle release
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17 It was originally believed that spikes traveled only from the soma down
the axon, but more recent findings show that spikes also originate in the
dendrites.  These findings have many implications for synaptic
plasticity. See, e.g., KOCH, supra note 14 at 428-51; Bartlett W. Mel,
Information Processing in Dendritic Trees, 6 NEURAL COMPUTATION 1031
(1994).  For implications in synaptic plasticity, see, for example, Rajesh
P.N. Rao & Terrence J. Sejnowski, Spike-Timing Dependent Hebbian
Plasticity as Temporal Difference Learning, 13 NEURAL COMPUTATION 2221
(2001).

18
Analog computing is also an important technology, and lends itself well
to neural computation, in that analog functions more closely represent
functions within the CNS than do digital computing functions.  See
ANALOG VLSI: CIRCUITS AND PRINCIPLES at xvii, xix, 1-3 (Shih-Chii Liu
et. al. eds., MIT Press 2002)

sites, by an increase in the probability of vesicle release, or by some other
method?17

B. Computational Neuroscience

Computational neuroscience, the study of CNS information
processing, bears no relation at all to the workings of a digital computer.
The architecture of the CNS and a digital computer are distinct in that they
work on different principles in different media.  However, digital computers
are useful because they are extremely fast and software can be written which
mimics CNS architecture, so that CNS computation can be simulated on a
digital computer.18

As with any very complex problem, there are differing hypothetical
solutions for how the CNS encodes information.  One theory, known as
“rate coding,” hypothesizes that information is encoded according to the
rate at which spikes occur.  “[T]he number of spikes in a fixed time window
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19 FRED RIEKE, ET AL., SPIKES: EXPLORING THE NEURAL CODE 7 (MIT Press
1997).

20 This theory was originally advocated by SIR CHARLES SHERRINGTON,
INTEGRATIVE ACTION OF THE NERVOUS SYSTEM (C. Scribner’s Sons 1906).
It has been elaborated by numerous scientists.  See, e.g., Michael
Shadlen & William T. Newsome, Noise, Neural Codes, and Cortical
Organization,  4 CURRENT OPINIONS IN NEUROBIOLOGY 569 (1994).

21 See MOSHE ABELES, CORTICONICS: NEURAL CIRCUITS OF THE CEREBRAL
CORTEX (Cambridge University Press 1991); Peter Konig et al., Integrator
or Coincidence Detector? The Role of the Cortical Neuron Revisited, 19
TRENDS IN NEUROSCIENCES 130 (1996).

following the onset of a static stimulus represents the intensity of that
stimulus.”19

An assumption underlying the theory of rate coding is that the rate
of spikes is determined by the sum of the pre-synaptic inputs being relayed
to the post-synaptic cell, where a “switch” determines whether the sum of
the stimulation is sufficient to cause the post-synaptic neuron to spike.  This
is the “integrate-and-fire” assumption, under which the total EPSPs and
IPSPs in a certain time period are summed, or integrated, to determine
whether or not a spike will occur.20

Another important model of synaptic activity is “coincidence
detection” which postulates that information is encoded because of the
precise timing of pre-synaptic and post-synaptic activity.  Synchronous
firing causes encoding.21  Thus, according to coincidence detection,
individual EPSPs, rather than large numbers of them, cause information to
be encoded.

Coincidence detection is supported by the observation that rate
coding is essentially impossible at the very high speeds in which some
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22 See, e.g., KONIG ET AL., supra note 21.

sensory information is processed.22  There are substantial differences
between the theories of rate coding and coincidence detection. One theory
or some combination of both may explain the experimental data.  It is
possible that different CNS functions use rate coding and coincidence
detection in intricate combinations in order to perform the phenomenal feats
of the CNS.

C. CNS Functions

The CNS is a massively parallel network.  There are innumerable
“hard-wired” connections dedicated to performing functions necessary for
survival, and these circuits perform their functions at speeds breathtaking
by current digital computer standards.

The patterns of connections in the CNS suggest a broad outline of
how CNS functions are implemented.  For example, the general pattern of
connections between Area V1, the primary entrance of visual information
into the cortex, to Areas V2, MT, MST and others, suggests that visual
images are generally deconstructed by numerous areas of the brain
dedicated to various kinds of features or motion.

A viewer can easily recognize a familiar face in approximately one
second.  The maximum speed of most neurons is about 100 spikes per
second.  This gives rise to the “100 step rule” which postulates that most
CNS functions can be performed in 100 steps or less.

Thus, the CNS makes up for its lack of speed, compared to digital
computers, with massively parallel connections, which allow dedicated
circuits to perform functions almost instantaneously.  The number and
complexity of these parallel circuits is shown by the fact that the CNS
contains perhaps 100 billion neurons, each of which synapses onto at least
several and possibly thousands of neurons.  The functions of the CNS can
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be identified and discussed as properties of the neurons and neuronal
assemblies themselves.  

As an example, the most important CNS sensory function is vision.
A list of CNS vision-related functions includes:

Contrast Sensitivity

Lightness Constancy

Image Stabilization

Edge Detection

Spatial Acuity

Detection Acuity

Localization Acuity

Resolution Acuity

Color

Orientation Tuning

Feature Binding

Depth Perception

Motion Perception

Contextual Modulation

Attention

Vestibulo-Ocular Reflex

Saccade

Fixation

Visual Memory

Vergence

Seeing a colorful airplane in flight across the sky requires collaboration of
many CNS functions, including image stabilization, edge detection, motion
perception, orientation tuning, and rapid eye movements, called saccades.
Each of the CNS visual functions represents an important area of research
in visual neuroscience, and there are many other sensory, motor, and
cognitive functions under investigation.  Each function represents a field for
the advance of cognitive neuroscience and, eventually, neural computation.
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23 Jeffrey Dean, Animats and What They Can Tell Us, 2 TRENDS IN COGNITIVE
SCIENCES 60, 62 (1998).

24 DAVID E. RUMELHART & JAMES L. MCCLELLAND, PARALLEL DISTRIBUTED
PROCESSING: EXPLORATIONS IN THE MICROSTRUCTURE OF COGNITION 21
(MIT Press 1986); see also Alan F. Murray, Pulse-Based Computation in
VLSI Neural Networks, in PULSED NEURAL NETWORKS 87 (Wolfgang Maas
& Christopher M. Bishop eds., 1999).

D. Neural Software

Neural computation is a broad label applied to efforts to mimic the
synaptic action of CNS functions through software.  Computer scientists and
others work from neurobiological data on rate coding and coincidence
detection to design digital software which seeks to perform biologically
observed functions.  This field is as diverse and difficult to define as the CNS
itself.  

The potential applications for neural computation are infinite.  For
a robot, however, a task as simple as recognizing an obstacle in a pathway
and avoiding it has proven daunting.23

A notable cluster of theories is called connectionism, or parallel
distributed processing (“PDP”).  The basic components of connectionism are
neural networks or neural nets: software implemented algorithms modeled
after biophysically observed properties of neurons.  Processing units or
nodes transform inputs (pre-synaptic) into outputs (post-synaptic) which
represent neural information processing.  A node in a neural net is an
approximation of a synaptic alteration (weighting) of pre-synaptic spikes.
Each node has an activation value which corresponds roughly to the
strength of the hypothesis that what that unit stands for is present in the
perceptual input.  Nodes are connected and transmit information to one
another by implementing neural concepts, such as LTP and LTD.  Thus,
mutually consistent nodes tend to excite one another, and mutually
inconsistent nodes tend to inhibit one another.24  The patterns of information
are not stored in these PDP models.  Rather, what is stored is the connection
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25 RUMELHART & MCCLELLAND, supra note 24, at 31.

26 Figures are from the PTO’s web database. Figures for 2002 are
annualized based on data through February 2002.  See
http://www.uspto.gov.

strengths between the nodes, so that a representation of a real world object
is comprised of a group of connections between nodes.25

Neural computation is a rapidly expanding field.  Patent applications
for neural computation inventions are proliferating and, given the subject’s
complexity and intangibility, the field could become an unmanageable area
of patents without careful planning.  A review of patents issued by year26 in
relevant patent classifications 382/117 and 382/118, “Image Analysis, Using
a Characteristic of the Eye” or “Using a Facial Characteristic”, respectively,
shows a large increase in the numbers of patents issued beginning in 1993:
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27 AT&T Corp. v. Excel Communications, Inc., 172 F.3d 1352, 1361, 50
U.S.P.Q.2d (BNA) 1447, 1451 (Fed. Cir. 1999).

28 Id. at 1358, 50 U.S.P.Q.2d (BNA) at 1452

29 Id. at 1357, 50 U.S.P.Q.2d at 1450; see also John W. Bagby, Business
Method Patent Proliferation: Convergence of Transactional Analytics and
Technical Scientifics, BUS. LAW. 423, 436-39 (2000).

These data represent a marked increase in inventive activity in computer
vision, and presage a much larger increase in such activity.  What follows is
a suggestion for how the PTO can better cope with the rising tide of patent
applications in neural computation.

IV. COGNITIVE NEUROSCIENCE AS A MODEL FOR NEURAL SOFTWARE

PATENT EXAMINATION

Software, standing alone, first won unequivocal status as patent
eligible subject matter under 35 U.S.C. § 101 in AT&T Corp. v. Excel
Communications, Inc.27 In that case, the Federal Circuit directly addressed the
previous physicality requirement which allowed software to be patent
eligible subject matter only when applied to a physical transformation of
matter.28  The Federal Circuit eliminated the physicality requirement for
software-related patents.29  Thus, software’s status as patent eligible subject
matter, by itself and without a physical transformation of matter, is secure.

Software’s new, unequivocal status as patent eligible subject matter
means that the courts have done little or nothing to explicate software’s
novelty, obviousness, enablement, best mode, or written description, the
traditional requirements of patent law.  Perhaps the only certainties now are
that nothing is certain, and that we are beginning a search for rules
governing software patents.  The Federal Circuit has implicitly
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30 AT&T Corp., 172 F.3d at 1357, 50 U.S.P.Q.2d at 1450.

31 Newell, supra note 4, at 1035.

32 Id.

33 The transcript of these hearings is reproduced in GREGORY STOBBS,
SOFTWARE PATENTS app. A (2001)[hereinafter 1994 Hearings].

34 Examination Guidelines for Computer-Related Inventions, 61 Fed. Reg.
7,478, 7,481 (Mar. 29, 1996).

acknowledged this.30  As Professor Newell said, “fixing the models is an
important intellectual task.  It will be difficult.  The concepts that are being
jumbled together—methods, processes, mental steps, abstraction,
algorithms, procedures, determinism—ramify throughout the social and
economic fabric.”31  Making further progress will require “sustained
intellectual labor.”32  Moreover, he made this observation before the
onslaught of neural software which creates additional complexity.

For a number of years before AT&T v. Excel, members of the public
debated whether software should be patent eligible subject matter, and some
of this debate was captured in PTO public hearings on software patents in
1994.33  These hearings reflected no consensus about the desirability of
software patents.  Subsequently, the PTO acknowledged public debate over
the patent eligibility of software and software-implemented business
methods by issuing documents demonstrating the rationale for such patents.
Later, the PTO’s Examination Guidelines for Computer-Related Inventions
(“Guidelines”) stated that software is section 101 subject matter not only
when involved in a physical process, but also in a process that is merely
useful.34  The PTO “determined that additional training materials were
needed to address how to apply the Guidelines in the areas of business,
artificial intelligence and mathematical processing applications.  Each of
these three areas has shown a high growth rate and increased examining
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35 U.S. PATENT & TRADEMARK OFFICE, EXAMINATION GUIDELINES FOR
COMPUTER-RELATED INVENTIONS: TRAINING MATERIALS DIRECTED TO
BUSINESS, ARTIFICIAL INTELLIGENCE AND MATHEMATICAL APPLICATIONS,
available at http://www.uspto.gov/web/offices/pac/compexam/exam
comp.pdf (last visited July 2, 2003).

36 Id.

37 See, e.g., U.S. PATENT & TRADEMARK OFFICE, WHITE PAPER: AUTOMATED
FINANCIAL OR MANAGEMENT DATA PROCESSING METHODS (BUSINESS
METHODS): EXECUTIVE SUMMARY, available at http://www.uspto.gov/web
menu/busmethp/index.html (last visited June 22, 2003).

38 See Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the
Software Industry, 89 CAL. L. REV. 1, 3 (2001).

39 See 1994 Hearings, supra note 33.

40 See Pamela Samuelson, et al., Manifesto Concerning the Legal Protection of
Computer Programs, 94 COLUM. L. REV. 2308 (1994).

complexity.”35  Following issuance of the Guidelines, the PTO published
training materials illustrating how to apply them.36  The PTO has also issued
materials concerning software-implemented business method patents,
including the rationale for their status as section 101 subject matter.37

Issuance of these apologetics and special examination procedures
demonstrates uncertainty about how the software patent regime will be
made to work.  Given the riddles presented by software patent applications
and the rising workload from the accelerating rate of filing, the PTO has
done a commendable job in coping.  Software patents are being issued in
large numbers,38 however, and many believe that using a “business as
usual” approach for software patents will be unsatisfactory.39  Some argue
for an alternate system for protection of software as a whole.40  Others desire
a separate system for protection of software-implemented business methods
because, they believe, business is different from more “traditional” areas of
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41 Leo J. Raskind, The State Street Bank Decision: The Bad Business of
Unlimited Patent Protection for Methods of Doing Business, 10 FORDHAM
INTELL. PROP. MEDIA & ENT. L.J. 61, 66 (1999).

42 Maureen A. O’Rourke, Toward a Doctrine of Fair Use in Patent Law, 100
COLUM. L. REV. 1177, 1212, 1220-35 (2000); Cohen & Lemley, supra note
38, at 3 (reverse engineering).

43 See Alan L. Durham, “Useful Arts” in the Information Age, 1999 BYU L.
REV. 1419, 1528 (1999).

44 Cohen & Lemley, supra note 38, at 47-50.

45 35 U.S.C. §§ 101, 102, 112 (2003).

invention because it is based upon competition and emulation.41  Less drastic
suggestions are for piecemeal refinements of patent rules for software.  Some
argue for borrowing the doctrine of fair use from copyright law and
allowing reverse engineering.42  Another approach would be to require
inventors to disclose more of the software architecture and code to obtain
patents, allowing a greater level of scrutiny of the “how and what” of
software.43 Others suggest employing a “level of abstraction” analysis.44

Some of these approaches include requiring greater judicial emphasis on
some particular aspect of Sections 102, 103, and 112 of the Patent Code.45

Most of these recommendations would require changes in patent
prosecution practice.

It is possible that one or more of these approaches might be helpful,
but the focus of this article is on less drastic means which could be employed
internally by the PTO.   Conventional software has been difficult enough to
classify, but neural software, based upon mental processes, is more abstract
than conventional software, and neural software patents will be more
difficult to manage than conventional software patents.  Better classification
of neural software inventions will improve the quality of prior art searches
and examination.
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46 Shatterproof Glass Corp. v. Libbey-Owens Ford Co., 758 F.2d 613, 620,
225 U.S.P.Q. (BNA) 634, 638 (Fed. Cir. 1985).  See generally DONALD
CHISHUM, 2 CHISUM ON PATENTS § 5.03(1) (1994) for presentation of the
product-oriented approach and the problem-solving approach.  The
issue of “dumb art” discussed by Chisum in the referenced section is
not the point of the author’s recommendation for new patent
classifications.  Rather, the complexity and intangibility of neural
software is what supports a CNS analog, i.e., problem-solving
approach.

The functions of the CNS provide a powerful model for assessing the
novelty and obviousness of neural software patents for a very simple reason:
the very intangibility of CNS functions is the stuff of neural software
functionality.  Such software-implemented methods are the analogs of
human cognition, and thus cognitive neuroscience could shed light on
questions of patent eligibility.  The cognitive neuroscience model would
provide a robust means of analysis at almost any level of abstraction because
neural computing can be described in terms from the highest to lowest levels
of abstraction.  

The parallel and distributed functions of the CNS, discussed above,
provide a ready set of categories with which to classify “process” software
patents, as that term is used in the sense of cognitive neuroscience.  These
CNS functions, when applied to software, would be a series of CNS analogs
describing an aspect of inventions in addition to the current, mostly
product-oriented classifications.  Such an approach is supported by the
Federal Circuit rule that one should “look first to the nature of the problem
confronting the inventor . . . If the reference is not within the field of the
inventor’s endeavor, one looks at whether the field of the reference is
reasonably pertinent to the problem the inventor is trying to solve.”46  It is
fitting that CNS analogs provide a roadmap to process software examination
because software has, for the most part, been patented with highly abstract
descriptions.  Software patent applicants do not, as a general rule, submit
detailed source code.  Thus, a problem-solving approach would fit the
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47 See DAVID MARR, VISION: A COMPUTATIONAL INVESTIGATION INTO THE
HUMAN REPRESENTATION AND PROCESSING OF VISUAL INFORMATION
24-27 (W.H. Freeman 1982) for a discussion of the levels of analysis of
computational issues in computer vision.

48 JIM R. PARKER, PRACTICAL COMPUTER VISION USING C at xv, xvi, 1 (Wiley
1993).

49 See, e.g., David Hubel & Torsten Wiesel, Receptive Fields, Binocular
Interaction, and Functional Architecture in the Cat’s Visual Cortex, 160 J.
PHYSIOLOGY 106, 115-17 (1962).

current practice of filing software patent applications by describing
functions of the software without disclosing any of the source code.47

A. Problem-Solving Classifications Using CNS Analogs for
Computer Vision

An example demonstrates why CNS analogs as classifications could
bring clarity.  Computer vision, as it now stands, involves extracting and
classifying information from images for recognition of faces and signatures,
matching fingerprints, inspecting parts on assembly lines, and guiding
robots.  Image processing and graphics are part of the overall combination
which constitutes computer vision.48  In visual neuroscience, it is known that
detection of the edges of an object occurs in Area V1 of the neocortex by
means of neurons with a center-surround receptive field.  These edge
detector neurons are distributed and connected locally to one another in a
manner that produces a mapping of the visual field.  “Center-surround”
means that the center of the cell’s receptive field responds to light differently
than the outer, surrounding portion of its receptive field.49  Greatly
simplified, a luminance border, or object edge in a natural scene causes
center-surrounds (with “On” center and “Off” surround) along a luminance
boundary to be relatively inhibited if more of the receptive field is in the less
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50 THOMAS T. NORTON, ET AL., THE PSYCHOPHYSICAL MEASUREMENT OF
VISUAL FUNCTION fig.6-5 (2002).

luminous area, or relatively excited if less of the receptive field is in the more
luminous area, as in the following diagram:50
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51 Id. fig.6-4

Neuron 2 is most activated, and neuron 3 is least activated, so the location
of the edge is fixed by the relation between the two.  A collection of neurons
thus relatively inhibited and excited simultaneously produces a pattern of
spikes the brain “sees” as an edge.

In a phenomenon called Mach bands, the center-surround
organization of the receptive field enables the brain to interpret luminance
boundaries as seen in the following three figures:51
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52 PARKER, supra note 48, at 160. A television is not intelligent in the sense
of recognizing any object it displays. Object recognition is left to the
human viewer.

53 COMPUTATIONAL MODELS OF VISUAL PROCESSING (Michael S. Landy &
J. Anthony Movshon, eds., MIT Press 1991).

54 U.S. Patent No. 6,328,211 (issued Dec. 11, 2001) (bar code scanner in
classification 235); U.S. Patent No. 5,610,598 (issued Mar. 11, 1997)
(missile telemetry in classification 340); U.S. Patent No. 5,467,138
(issued Nov. 14, 1995) (computer graphics in classification 348); U.S.
Patent No. 5,909,478 (issued June 1, 1999)(x-ray equipment in
classification 378); U.S. Patent No. 6,181,806 (issued Jan. 30, 2001)(facial

Each panel appears darker on its right and brighter on its left as a result
of accentuation of brightness and darkness at the borders.  The different
bands of luminance are depicted in figure A, a graph of the absolute
luminance level is figure B, and the brightness perceived by the visual
cortex is approximated by figure C.

Edge detection, then, is one of the basic CNS visual functions,
used by the brain to solve the problem of identification of components of
natural scenes such as a face, obstacle, or symbol.  Edge detection is also a
basic method used by artificial vision systems intended to recognize or
manipulate objects using neural computation.52  There are a number of
hypotheses (i.e. algorithms) regarding how the brain computes these
edges.  Correspondingly, there are numerous efforts to design software
which can recognize objects or people.53  Although edge detection
algorithms differ, the goal of the inventors is the same: faithful
representation of the features of real world objects.  

The PTO web database shows, for instance, that edge detection is
employed by five patented software inventions in five patent
classifications which appear to be unrelated to one another because of the
current classification system: bar code scanning, missile telemetry,
computer graphics, x-ray equipment, and facial recognition.54  Each
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recognition in classification 382).

patent referenced is representative of other patents in its own
classification, and the patents cited are not cross-referenced to the other
referenced classifications.  There are a number of different
sub-classifications which contain patents which are not cross-referenced,
such as those in 382/118 (facial recognition) which are not cross-classified
to 382/119 (signature verification).  Some of these inventions might or
might not use the same edge detection algorithm, but the actual
algorithm is not disclosed by all of these patents.  The current
application-specific classifications by themselves do not provide a full
picture of the relationship among a key feature of these patented
inventions.  This is an example of how the intangible nature of neural
software functionality makes it difficult to classify using PTO
application-specific categories.

Identifying the CNS analog to the neural software process in
question would allow another method for examining patent applications
and classifying issued patents in addition to the product-oriented
categories of the current classifications.  The current system of classifying
neural software inventions by application in this way fails to account for
how algorithms are re-used, and fails to disclose the novel aspect of an
invention.  This pattern is repeated over and over in the current
classification system.  Each of the CNS analogs for neural computation, if
used to classify inventions, could provide a better method for disclosure
to the public of the invention’s novelty.  Likewise, it would provide an
additional method for determining obviousness.

For example, suppose a patented invention is classified with the
functions of edge detection and image stabilization.  Now imagine a new
invention which incorporates these two functions plus effective lightness
constancy.  The presence of the claim of lightness constancy would be a
quick indication of novelty. Closer analysis of novelty would be required
in any case, of course, but functional classification would provide large
clues about novelty in a highly abstract field of invention.
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55 JACK COPELAND,  ARTIFICIAL INTELLIGENCE: A PHILOSOPHICAL
INTRODUCTION 31 (Blackwell 1993).

56 NIKOLA K. KASABOV, FOUNDATIONS OF NEURAL NETWORKS, FUZZY
SYSTEMS, AND KNOWLEDGE ENGINEERING at xiii (MIT Press 1996).

57 Id. at 167, 192-96.

B. Shades of Gray

In any classification system there will be shades of gray which are
more difficult to classify.  Expert systems, for example, are
knowledge-based programs for solving problems within a field, such as
medical diagnosis, based upon human input of if-then rules.55  Another
software regime is that of fuzzy systems, which can represent explicit but
ambiguous common-sense knowledge and relations.56  Fuzzy logic is a
multi-valued logic with intermediate values to be defined between
conventional binary evaluations like zero/one or yes/no.  States like “the
temperature is high” can be formulated mathematically through the use
of sets and processed by fuzzy logic.  Although fuzzy logic attempts to
apply a more human-like way of thinking in computer programming, it is
based upon rules—fuzzy rules.57

Software will also contain some elements of machines and some of
process. Some elements might be somewhere in between.  Each function
must be analyzed separately so that its combination in the invention can
be understood more clearly.

Other software inventions might appear to reflect neural
computation by means of interweaving intricate if-then rules which
produce adaptation based only upon pre-set values and thresholds.  For
example, U.S. Patent No. 5,954,777 claims a system, including software,
for determining gear ratio changes in an automatic transmission
according to the behavior of the driver, the traffic situation, and the
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58 U. S. Patent No. 5,954,777 (issued Sept. 21, 1999).  No attempt has been
made to review the patent’s file wrapper to assess the prosecution
history.  This patent is accepted at face value for the purpose of
illustrating that software-implemented inventions make claims of
plasticity in varying ways.

59 Id.

driving situation to which the vehicle is subjected.58  According to the
patent’s “Background of the Invention” and “Summary of the Invention,”
the invention evaluates whether the driver is inclined toward
power-oriented or consumption-optimized driving.  A determination can
be made whether the vehicle is in city traffic, before or in a curve, on a
hill, or in overrun operation.  The following variables are supplied to a
characteristic field: the detected position of the accelerator pedal, the
straight-line vehicle speed, and the transmission rpm or engine rpm. 
“The essence of the invention is that the determination of the adaptation
variable by means of the evaluation mode is dependent upon a
comparison of the time-dependent change of the first input variable to at
least a threshold value.”59  The outcome of these operations appears to be
neuro-mimetic, but needs careful classification in light of CNS functions
such as LTP and LTD.  Any gray areas in devising new problem-oriented
classifications, however, should not delay initiation of the task of
developing new classifications.

V. CONCLUSION 

Neural software inventions should be examined in light of CNS
analogs.  Employing cognitive neuroscience as a model for analysis of
neurally modeled software, including software-implemented business
method patents, would empower the PTO and courts to use novelty,
obviousness, and the section 112 requirements to differentiate better
among software inventions.  As cognitive neuroscience evolves, richer
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and more meaningful distinctions among neurally-based programs
would be possible.  The PTO should begin developing a new set of CNS
analog classifications for use in conjunction with the current
classifications.  Once employed, the new classifications would enable
greater clarity for examiners, practitioners, and the courts in sorting
through novelty, obviousness, best mode, written description, and
enablement.  The new classifications would be a tool to help render more
tangible the difficult task of examination of neural software patent
applications.


